
Lightweight Multi-View
3D Pose Estimation

through
Camera-Disentangled Representation

Edoardo Remelli
Shangchen Han

Sina Honari
Pascal Fua

Robert Wang

Motivation
Multi-view input from synchronized and calibrated cameras

Can we fuse features both effectively and efficiently in latent space instead?

State-of-the-art multi-view pose estimation solutions project 2D detections to 3D volumetric grids and
reason jointly across views through computationally intensive 3D CNN or Pictorial Structures

Problem Setting

Given:

• Multi-view input crops {"#}#%&'

• Camera projection matrices {(#}#%&'

Find:

• 3D articulated pose)
in world coordinates

) = (+ = , - + = ,(/+ + 1)Pinhole camera model:

Lightweight pose estimation

Resnet Shallow
decoder

Soft
Integration

Resnet Shallow
decoder

Soft
Integration

2D detections

Triangulation

3D pose

Real-time multi-view 3D pose estimation methods:
• Do not share information between features, although they represent the same pose in different

coordinate systems
• Do not supervise for the metric of interest and use triangulation as a post-processing step

?

?

Our Baseline [Fusion]

Resnet
Shallow
decoder

Soft
Integration

Resnet
Shallow
decoder

Soft
Integration

Conv
layers

Fusion

3d pose embedding in
camera coordinates

512X8x8

512X8x8 512X8x8

512X8x8

1024X8x81024X8x8

Let the network do all the hard work…How to reason jointly about pose across views?

Cons: overfits by design to camera setting, does not exploit camera transforms explicitly
Pros: simple to implement, effective

Resnet Shallow
decoder

Soft
Integration

Resnet Shallow
decoder

Soft
Integration

Feature in
camera
coordinates

Conv
layers

Canonical
Fusion

Feature in
world
coordinates

Feature in
world
coordinates

Feature in
camera
coordinates

!"#$

!%#$

!"

!%

If we could map features to a common frame of reference before fusing them, jointly
reasoning about views would become much easier for the network.
How to apply transformation to feature maps without using 3d volume aggregation?

& = ! (=) * (=)(,(+ .)Pinhole camera model:Can we do better?

Review of Transforming Auto-Encoders
Given a representation learning task and a known source of variation !, [1] proposes
to learn equivariance with respect to the source of variation by conditioning latent
code on the variation

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks

"#$ "#$

"#% "#%

"#$ "#%

&#$

&#%

&#$

&#% = (#$→#%[&#$]

(#$→#%

Auto-Encoder Transforming Auto-Encoder

How to choose transform (#$→#% ?

Review of Transforming Auto-Encoders [1]
How to choose transformation T?

• Linear
• Invertible
• Norm preserving

ROTATIONS

Feature transform layer:

!"# = !"#. &'(ℎ*+'(2, /)
!"# ∈ ℝ3 4 5 4 6

!"7 = 8"#→"7!"#
!"7 = !"7. &'(ℎ*+'(:,;,<)

="# ="7

!"#

!"7 = >"#→"7[!"#]

>"#→"7

We can use a feature transform
layers to map features between
frames of reference

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks

Our architecture [Canonical Fusion]

Resnet
Shallow
decoder

Soft
Integration

Resnet
Shallow
decoder

Soft
Integration

Feature in
camera
coordinates

Conv
layers

Feature in
world
coordinates

Feature in
world
coordinates

Feature in
camera
coordinates

!"#$

!%#$

!"

!%
1024X8x8 512X8x8

512X8x8

512X8x8512X8x8

512X8x8

Canonical
Fusion

• Makes use of camera information (Flexible)
• Lightweight (Does not rely on volumetric aggregation)

Now that we computed 2D detections, how can we lift them to 3D
differentiably?

Direct Linear Transform (DLT)

{"#}#%&' (

Review of DLT

From Epipolar Geometry:

{"#}#%&' (
)#"# = +#(

)#,# = -#&.(
)#/# = -#0.(
)# = -#1.(

-#1.,# − -#&. (= 3

-#1./# − -#0. (= 3

Accumulating over available N views:

4(= 3, 4 ∈ ℝ0' ×9

Admits non-trivial solution only if "# and +# are not noisy, therefore we must solve a relaxed version

min= 4(,
>. @. A = 1

Equivalent to finding the eigenvector of 4.4 associated to
the smallest eigenvalue

CD#E(4.4)

How to solve it?

!"#$ %&% ?
In literature, the smallest eigenvalue is found by computing a Singular Value
Decomposition (SVD) of matrix A [2]

We argue that this is sub-optimal because:

• we need only the smallest eigenvalue, not full SVD factorization

• SVD is not a GPU friendly algorithm [3]

[2]: Hartley and Zisserman, Multiple view geometry in computer vision
[3]: Dongarra, Gates, Haidar, Kurzak, Luszczek, Tomov, and Yamazaki, Accelerating numerical dense linear algebra calculations with GPUs

How to solve it?
Step 1: derive a bound for the the smallest singular value of matrix A:

Step 2: use it to estimate the smallest singular value. Then refine the estimate iteratively using Shifted Power Iteration
method. Algorithm 1 is guaranteed to converge to the desired singular value because of the bound above.

Quantitative Evaluation – Direct Linear Triangulation

For reasonably accurate 2D detections, our algorithm converges in as little as 2 iterations to the desired eigenvalue.
Since it requires only a small matrix inversion and few matrix multiplications, it is much faster than performing full SVD
factorizations, especially on GPUs.

Quantitative Evaluation – H36M

w/o additional training data:

w additional training data:

Quantitative Evaluation- Total Capture

Seen cameras:

Unseen cameras:

Contributions

Resnet Shallow
decoder

Soft
Integration

Resnet Shallow
decoder

Soft
Integration

2D detections

Differentiable
GPU-friendly
Triangulation

3D pose

• A novel multi-camera fusion technique that exploits 3D geometry in latent space to jointly reason about
different views efficiently

• A new GPU-friendly differentiable algorithm for solving Direct Linear Triangulation, which is up to 3 orders
of magnitude faster than SVD-based implementations while allowing us to supervise directly for the metric
of interest

! |#$%$

&'(

! |#$

! |#)! |#)%$

Camera-Disentangled
Representation

Please refer to the video for qualitative results and visualizations!

For any question, feel free to reach out to
edoardo.remelli@epfl.ch

Thank you!

