I

Lightweight Multi-View
3D Pose Estimation
through
Camera-Disentangled Representation

Edoardo Remelli

Shangchen Han

Sina Honari
Pascal Fua
Robert Wang
p— facebqok
= L Reality Labs

Motivation

Multi-view input from synchronized and calibrated cameras

State-of-the-art multi-view pose estimation solutions project 2D detections to 3D volumetric grids and
reason jointly across views through computationally intensive 3D CNN or Pictorial Structures

Can we fuse features both effectively and efficiently in latent space instead?

Pinhole camera model: | x = P(X) = KE(X) = K(RX +t)

Problem Setting

Given: Find:
* Multi-view input crops {Ii}liv=1 * 3D articulated pose x
« Camera projection matrices {P;}1; in world coordinates

/
Q\
“b

Lightweight pose estimation

Real-time multi-view 3D pose estimation methods:

* Do not share information between features, although they represent the same pose in different

coordinate systems

* Do not supervise for the metric of interest and use triangulation as a post-processing step

Resnet

Resnet

Shallow
decoder

Shallow
decoder

Soft
Integration

Soft
Integration

2D detections

?
/A
Triangulation l
3D pose

Our Baseline [Fusion]

3d pose embedding in
camera coordinates Shallow Soft
Resnet i
decoder ||Integration
512X8x8 512X8x
Conv
layers
1024X8x8 1024X8x8
. ~— | Shallow Soft
SIS decoder || Integration
12X8x8 Fusion 512X8x8

How to reason jointly about pose across views? Let the network do all the hard work...

Pros: simple to implement, effective
Cons: overfits by design to camera setting, does not exploit camera transforms explicitly

Ca N We d O bette r? Pinhole camera model: | x = P(X) = K E(X) = K(RX + t)

Feature in Feature in Feature in Featurein
camera world world camera
coordinates coordinates coordinates coordinates
-1
F P, Shallow Soft
Resnet ‘ ‘ decoder Integration
Conv
layers
-1
- P, L, P Shallow Soft
esnet =) decoder | |Integration
Canonical
Fusion

If we could map features to a common frame of reference before fusing them, jointly
reasoning about views would become much easier for the network.
How to apply transformation to feature maps without using 3d volume aggregation?

Review of Transforming Auto-Encoders

Given a representation learning task and a known source of variation 8, [1] proposes
to learn equivariance with respect to the source of variation by conditioning latent

code on the variation

Auto-Encoder

Transforming Auto-Encoder

291

{“_?} 191/ ;eﬁez/,lez ﬁ

zg, = Tg,-0,[20,]

How to choose transform Ty _,g, ?

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks

Review of Transforming Auto-Encoders [1]

How to choose transformation T? 2,

|) 1 /]Teﬁez [
* Linear g 6 J L —r
* Invertible ROTATIONS 26, = To,-0,12]

* Norm preserving

Feature transform layer:

zg, € RFXWXH We can use a feature transform
zg, = zg,.reshape(2,N) layers to map features between
zg, = Ro,-0,%0, frames of reference

Zg, = Zg,.reshape(F,W,H)

2

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks

Resnet

Resnet

Feature in Feature in Feature in
camera world world
coordinates coordinates
-1
Py P,
512X8x8 512X8x8
Conv
layers
1024X8x 512X8x8
P! P,
512X8x8 Ca n.onlcal 512X8x8
Fusion

Makes use of camera information (Flexible)

coordinates coordinates

Our architecture [Canonical Fusion]

Feature in

Shallow
decoder

Shallow
decoder

Lightweight (Does not rely on volumetric aggregation)

Soft
Integration

Soft
Integration

Now that we computed 2D detections, how can we lift them to 3D
differentiably?

Direct Linear Transform (DLT)

DLT

JNSE -~
- v ‘-‘

{ui}liv=1 X

Review of DLT P

DLT
From Epipolar Geometry:
diu; = pi'x 3T, — 1Ty = 0 | | "
- (Pi Ui — bj)x =
di; = Pix == — dp; =piix - - AN
d; = p¥'x (pl- V; — P;)x =0 {u;}i=4 X

S

Accumulating over available N views:

Ax =0, A € RN x4

Admits non-trivial solution only if u; and P; are not noisy, therefore we must solve a relaxed version

Equivalent to finding the eigenvector of AT A associated to

E— the smallest eigenvalue

s.t. |x| =1 Amln(ATA)

min |Ax|,
X

How to solve it?

Amin (ATA)?

In literature, the smallest eigenvalue is found by computing a Singular Value
Decomposition (SVD) of matrix A [2]

We argue that this is sub-optimal because:
 we need only the smallest eigenvalue, not full SVD factorization

* SVDis not a GPU friendly algorithm [3]

[2]: Hartley and Zisserman, Multiple view geometry in computer vision
[3]: Dongarra, Gates, Haidar, Kurzak, Luszczek, Tomov, and Yamazaki, Accelerating numerical dense linear algebra calculations with GPUs

How to solve it?

Step 1: derive a bound for the the smallest singular value of matrix A:

Theorem 1 Let A be the DLT matrix associated to the non-
perturbed case, i.e. 0,i,(A) = 0. Let us assume i.i.d Gaus-
sian noise € = (gy,,) ~ N(0,8%I) in our 2d observa-
tions, i.e. (u*,v*) = (u+ €4,V + &), and let us denote
as A* the DLT matrix associated to the perturbed system.
Then, it follows that:

0 < E[omin(A¥)] < Cs, where C = C({u;, P;}Y.))

Step 2: use it to estimate the smallest singular value. Then refine the estimate iteratively using Shifted Power Iteration
method. Algorithm 1 is guaranteed to converge to the desired singular value because of the bound above.

Algorithm 1: DLT-SU({u;, P} |, T = 2)

A A({w;, P}L):;

B« (ATA+ol)7 1

o < 0.001 (see Theorem 1);

x < rand(4,1);

fori: =1:7do
X <+ Bx;
X < x/||x

end

returny < x(0 : 3)/x(4);

9

Quantitative Evaluation — Direct Linear

a) Theorem 1

—150
Y
*
3100
.8
g
b 50
e
[
0_
0 10 20 30 40 50 60 70
b) Accuracy
100 1" DLT-Ours-1 iter
%0 DLT-Ours-2 iter
E == DLT-SVD -
— 60 - -
[al
E 40 -
1
0 -
on
04 =~
0 10 2 30 40 50 6 70
2D-MPJPE

¢) CPU Profiling

50 100 150 200 250

d) GPU Profiling
/”’
S
5'0 I(I)O 1;0 2(1)0 2;0
batch size

riangulation

For reasonably accurate 2D detections, our algorithm converges in as little as 2 iterations to the desired eigenvalue.
Since it requires only a small matrix inversion and few matrix multiplications, it is much faster than performing full SVD

factorizations, especially on GPUs.

Quantitative Evaluation — H36M

w/o additional training data:

p—

=

Methods Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. | Mean D)

Martinez et al. [20] 46.5 486 540 515 67.5 70.7 48.5 49.1 69.8 794 57.8 53.1 56.7 42.2 454 57.0 E

Pavlakos et al. [27] 412 492 428 434 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 394 56.9 <

Tome et al. [28] 433 496 420 488 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 453 52.8 Q
Kadkhodamohammadi et al. [16] | 39.4 469 410 427 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1
Qiu et al. [23] 34.8 358 327 33.5 34.5 38.2 29.7 60.7 53.1 35.2 41.0 41.6 31.9 31.4 34.6 38.3

Qui et al. [23] + RPSM 289 325 266 28.1 28.3 29.3 28.0 36.8 41.0 30.5 35.6 30.0 28.3 30.0 30.5 31.2 Al
Ours, Baseline 39.1 46.5 31.6 409 39.3 45.5 473 44.6 45.6 37.1 42.4 46.7 34.5 45.2 64.8 43.2

Ours, Fusion 31.3 373 294 295 34.6 46.5 30.2 43.5 442 324 35.7 334 31.0 38.3 324 354 E

Ours, Canonical Fusion (no DLT) | 31.0 35.1 28.6 29.2 32.2 34.8 33.4 32.1 358 348 333 32.2 29.9 35.1 34.8 32.5 D]

Ours, Canonical Fusion 27.3 321 250 265 29.3 354 28.8 31.6 364 317 31.2 29.9 26.9 33.7 304 30.2 E

<

Q

w additional training data: o

(av]

—

D)

Methods Model size | Inference Time | MPJPE g

Qui et al. [23] Fusion + RPSM 2.1GB 8.4s 26.2 ©

Iskakov et al. [15] Algebraic 320MB 2.00s 22.6 <

Iskakov et al. [15] Volumetric 643MB 2.30s 20.8 =

" —

Ours, Baseline 244MB 0.04s 34.2 é)

Ours, Canonical Fusion 251MB 0.04s 21.0 =

Q

Quantitative Evaluation- Total Capture

Seen cameras:

Methods Seen Subjects (S1,S2,S3) Unseen Subjects (S4,S5) Mean —
Walking Freestyle Acting | Walking Freestyle Acting <
Qui et al. [27] Baseline + RPSM 28 42 30 45 74 46 41 qé
Qui et al. [22] Fusion + RPSM 19 28 21 32 54 33 29 S
Ours, Baseline 31.8 36.4 24.0 43.0 75.7 43.0 39.3

Ours, Fusion 14.6 35.3 20.7 28.8 71.8 37.3 31.8 "
Ours, Canonical Fusion(no DLT) 10.9 32.2 16.7 27.6 67.9 35.1 28.6 s
Ours, Canonical Fusion 10.6 304 16.3 27.0 65.0 34.2 27.5 QE)
S
Unseen cameras: e
<
—
Methods Seen Subjects (S1,S2,S3) Unseen Subjects (S4,S5) Mean é
Walking Freestyle Acting | Walking Freestyle Acting o
Ours, Baseline 28.9 53.7 42.4 46.7 75.9 51.3 48.2 ~
Ours, Fusion 73.9 71.5 71.5 72.0 108.4 58.4 78.9 s
Ours, Canonical Fusion 224 47.1 27.8 39.1 75.7 43.1 38.2 é’
<

QP

Contributions

* A novel multi-camera fusion technique that exploits 3D geometry in latent space to jointly reason about

different views efficiently

* A new GPU-friendly differentiable algorithm for solving Direct Linear Triangulation, which is up to 3 orders
of magnitude faster than SVD-based implementations while allowing us to supervise directly for the metric

of interest

Camera-Disentangled
Representation

Resnet Pt 1P

P3p
> @ >

Resnet - |ps L 1P,

Shallow
decoder

Shallow
decoder

Soft
Integration

Soft
Integration

2D detections

Differentiable
GPU-friendly

Triangulation

—

3D pose

Please refer to the video for qualitative results and visualizations!

For any question, feel free to reach out to

Thank you!

