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Motivation
Multi-view input from synchronized and calibrated cameras

Can we fuse features both effectively and efficiently in latent space instead?

State-of-the-art multi-view pose estimation solutions project 2D detections to 3D volumetric grids and 
reason jointly across views through computationally intensive 3D CNN or Pictorial Structures



Problem Setting

Given:

• Multi-view input crops {"#}#%&'

• Camera projection matrices {(#}#%&'

Find:

• 3D articulated pose )
in world coordinates 

) = ( + = , - + = ,(/+ + 1)Pinhole camera model:



Lightweight pose estimation
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Real-time multi-view 3D pose estimation methods:
• Do not share information between features, although they represent the same pose in different 

coordinate systems
• Do not supervise for the metric of interest and use triangulation as a post-processing step

?

?



Our Baseline [Fusion]
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Let the network do all the hard work…How to reason jointly about pose across views?

Cons: overfits by design to camera setting, does not exploit camera transforms explicitly
Pros: simple to implement, effective
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If we could map features to a common frame of reference before fusing them, jointly 
reasoning about views would become much easier for the network.
How to apply transformation to feature maps without using 3d volume aggregation? 

& = ! ( = ) * ( = )(,( + .)Pinhole camera model:Can we do better?



Review of Transforming Auto-Encoders
Given a representation learning task and a known source of variation !, [1] proposes 
to learn equivariance with respect to the source of variation by conditioning latent 
code on the variation

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks
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Auto-Encoder Transforming Auto-Encoder

How to choose transform (#$→#% ?



Review of Transforming Auto-Encoders [1]
How to choose transformation T?

• Linear
• Invertible
• Norm preserving

ROTATIONS

Feature transform layer:

!"# = !"#. &'(ℎ*+'(2, /)
!"# ∈ ℝ3 4 5 4 6

!"7 = 8"#→"7!"#
!"7 = !"7. &'(ℎ*+'(:,;,<)

="# ="7

!"#

!"7 = >"#→"7[!"#]

>"#→"7

We can use a feature transform 
layers to map features between 
frames of reference

[1]: Worrall, Garbin, Turmukhambetov, and Brostow. Interpretable Transformations with Encoder-Decoder Networks



Our architecture [Canonical Fusion]
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• Makes use of camera information (Flexible)
• Lightweight (Does not rely on volumetric aggregation)



Now that we computed 2D detections, how can we lift them to 3D 
differentiably?

Direct Linear Transform (DLT)

{"#}#%&' (



Review of DLT

From Epipolar Geometry:

{"#}#%&' (
)#"# = +#(

)#,# = -#&.(
)#/# = -#0.(
)# = -#1.(

-#1.,# − -#&. ( = 3

-#1./# − -#0. ( = 3

Accumulating over available N views:

4( = 3, 4 ∈ ℝ0' ×9

Admits non-trivial solution only if "# and +# are not noisy, therefore we must solve a relaxed version  

min= 4( ,
>. @. A = 1

Equivalent to finding the eigenvector of 4.4 associated to 
the smallest eigenvalue 

CD#E(4.4)



How to solve it?

!"#$ %&% ?
In literature, the smallest eigenvalue is found by computing a Singular Value 
Decomposition (SVD) of matrix A [2] 

We argue that this is sub-optimal because:

• we need only the smallest eigenvalue, not full SVD factorization

• SVD is not a GPU friendly algorithm [3]

[2]: Hartley and Zisserman, Multiple view geometry in computer vision 
[3]: Dongarra, Gates, Haidar, Kurzak, Luszczek, Tomov, and Yamazaki, Accelerating numerical dense linear algebra calculations with GPUs 



How to solve it?
Step 1: derive a bound for the the smallest singular value of matrix A: 

Step 2: use it to estimate the smallest singular value. Then refine the estimate iteratively using Shifted Power Iteration 
method. Algorithm 1 is guaranteed to converge to the desired singular value because of the bound above.



Quantitative Evaluation – Direct Linear Triangulation

For reasonably accurate 2D detections, our algorithm converges in as little as 2 iterations to the desired eigenvalue.
Since it requires only a small matrix inversion and few matrix multiplications, it is much faster than performing full SVD 
factorizations, especially on GPUs.



Quantitative Evaluation – H36M 

w/o additional training data:

w additional training data:



Quantitative Evaluation- Total Capture

Seen cameras:

Unseen cameras:



Contributions
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• A novel multi-camera fusion technique that exploits 3D geometry in latent space to jointly reason about 
different views efficiently

• A new GPU-friendly differentiable algorithm for solving Direct Linear Triangulation, which is up to 3 orders 
of magnitude faster than SVD-based implementations while allowing us to supervise directly for the metric 
of interest
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Please refer to the video for qualitative results and visualizations! 

For any question, feel free to reach out to
edoardo.remelli@epfl.ch

Thank you!


